PonSpace

TECHNOLOGIES

PolySpace™ for C++
Getting Started R2007a+‘

How fo Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
www.mathworks.com/contact_TS.html

suggest@mathworks.com
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Web
Newsgroup
Technical Support

Product enhancement suggestions

Bug reports

Documentation error reports

Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Table of Contents
l.General REqUIFEMENESttt ittt eeneeeneeeneeensesneesnecnneenncenns 5
I.1. Computer Configurationttt 5
1.2. Structure of this document e 5
2. Step |I: PolySpace Client - Setting up and launching an analysis on a singleclass 6
2.1. Analysis Prerequisitesottt 6
: 2.2. Setting up a PolySpace Clientanalysis i 7
Q 2.2.1. Select results direCtoryttt 9
e j 2.2.2. Select the files of the analysis i 10
G 2.2.3.Select the class to analyse i i 12
i - 2.3. PolySpace Client: running the analysisiiiuuittun e, 13
2.3.1. Parsing errors during preliminary PolySpace analysis stages 15
2.3.2. Progression of the analysis 21
2.3.3.End of the analysisttt 22
3.Step 2: PolySpace Class Analyzerciitiiiiiiiiiiitiiieienneenneennsenneanans 23
3.1.Sources to be analysed 23
3.2. Architecture of the generated mainttt e 23
S5k Le@iT® o oaoaaoanoannane oo oAU 25
I 3.4. Characteristics of a class and messages of the logfile 26
3.5. Behaviour of global variables and members i 27
3.6. Methods and classes SpecifiCities oottt 29

4. Step 3: PolySpace Viewer - Explorationofresultsccciiitiiiiiiiiineenn. 31

4.1. Modes Of OPErationttt 31

4.2. Download resultst 32

4.3. Analysing PolySpace results in expert mode ("training.cpp”) 34

4.3.1. Procedural entities VIEWttt 36

4.3.2. Colours in the Source code VIEWttt e e e 41

4.3.3. More examples of diagnostict ottt 41

4.3.4. Advanced results exploration 42

= 4.3.5. C++ specific checks 44

3- 4.3.6. MISCEIIANEOUS . . . oottt et 45
! 4.4. Methodological assiStANTottt e 45
g 4.4.1. Assistant dashboard 47
ﬁ 4.4.2. Choose a methodological assiStantiiuunieinin e, 50
4.5. Report GENErationttt ettt ettt et e e e e e e e 51

5. Launch PolySpace Remotely ittt iiiitiiennnnnnns 55

5.1. Launching an analysis 55

5.2. Management of PolySpace analysis in remote: the PolySpace Spooler 57

5.3.Batch commands 59

5.4. Share analysis between account« . 6l

© The “Courier New” font is used for mentioning data seen on the screen of the computer.

I 0 SIURTITEIRT 60000000000 0000000 00000 63
Typographical conventions:
© The “»” symbol indicates an action which must be performed by the user.
© <PolySpaceInstallDir> stands for the directory/folder name where the PolySpace products were installed.

General Requirements

l.1. Computer Configuration

Please refer to PolySpace installation manual for the minimum hardware requirements.
The timing is the following:
* The installation of PolySpace products takes around 5 minutes (see the complete installation guide
as available from the PolySpace installation CD-ROM in \Docs\Install\PolySpace_Install_Guide.pdf).
* The first step of this tutorial takes about 20 minutes.
* The third step of this tutorial takes about 5 minutes.
* The fourth step of this tutorial takes about 10 minutes.

1.2. Structure of this document
Once the installation is done, you can launch PolySpace by using the following icons that were placed

on your desktop:
Y P PolySpace Launcher W-—H | PolySpace Spoaler PolySpace Viewer
Shortout ,_-l_ Sharkcut Shortout
ZKB FJ ZKB F.] ZKB

This Getting Started will focus on the following exercises using PolySpace Client, PolySpace Viewer and
PolySpace Remote Launcher:

* In Step | we will analyze a simple class in "training.cpp" by using the class analyzer available
in PolySpace Client.

* In Step 2 we will describe more thoroughly the capabilities of the class analyzer.

* In Step 3 we will review the results obtained during Step | by using PolySpace Viewer

* In Step 4, we will send an analysis remotely to a server.

Step 1.
PolySpace Client - Setting up
and launching an analysis on a single class

This paragraph describes a basic class analysis. It focuses on the analysis of the MathUtils class
in "training.cpp", which is included in the PolySpace installation directory and located at:
<PolySpaceInstallDir>\Examples\Demo Cpp Long\sources\training.cpp.

The PolySpace analysis process is composed of three main phases:

|. First, PolySpace checks the syntax and semantic of the analyzed file(s). However, as PolySpace
is not associated to a particular compiler, benefits of this phase are triple for the analysed source code:
ANSI C++ compliance, portability and maintainability.

2. Then, PolySpace seeks the main procedure. If none is found, PolySpace Client will generate one
automatically. By default, the main will build an instance of the class using constructor
and call all its public and protected function methods.

3. Finally, PolySpace proceeds with the code analysis phase, during which run time errors are detected
and highlighted in the code.

2.1. Analysis prerequisites

Any analysis requires the following:
* PolySpace products and their related license files correctly installed;
* Source code files (in this case "training.cpp") and all header files that it may directly
or indirectly include. For this tutorial we will see later that we need three header files, "training.h",
"zz_utils.h" and "math.h" in order to analyse the class MathUtils in "training.cpp".

* All "-D" compilation switches necessary to compile the file are known.
Please note that in this tutorial, no "-D" is necessary to compile "training.cpp".

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

2.2. Setting up a PolySpace Client analysis

» Double-click on the PolySpace Launcher icon:
PolySpace Launcher
§ Shortout
a ZKB

A window appears proposing to choose the product to be used for the analysis
and the language of the file to be analyzed:

PolySpace Client / Server Launcher

Select a product Select a language

(+ Client Launcher -
" Server Launcher o C++

" 4daB3/Adads

()8 | Cancel |

If PolySpace is not installed for some languages, these choices of languages will be grayed out.

» Select "Client Launcher", language "C++" and then, click on [o .

Step 1. PolySpace Client - Setting up and launching an analysis on a single class

The Graphical Interface of PolySpace analysis Launcher is displayed as below:

B PolySpece Clent BED)
Te Edt Iook Heb
Dom X HE»EH* 9
— e ————r =Nl
i e e Vo esrainane
wlysiscotons

Gereral
TargetConpier
Conplance wit stondards

Inclie drectores [-ade-nchide-dr]

Files extensions [-ex tensions-£or-spec-tiles]

Restults Directory [-results-diz]

» °

i Levert - 0% Level2: 0% Lovel3: 0% Leveld - 0% Lovel» 4 0%

Totsl
woaa w000 w0000 woso woaa oo ooooo

Bf commeton seachintets: [»
@Wh
s

» Click on File/New
Project to start an analysis:

The PolySpace Client New Project window opens.

It contains four sections: B PolySpace Client

* At the very top, the title bar, which contains usual icons and menus; i Et Tods Heb

* Top left is the list of files to analyze, along with include
and results directories;

* Top right is the set of options associated with the analysis
that will be processed;

* The bottom area allows following the execution I
and progress of the analysis.

L Cpen project T
] Click here ko create a new project e -]

e Path

¥ Quit G

Step 1: PolySpace Client - Setting up and launching an analysis on a single class

Bl Polyspace Client for CPP - New_Project
Fle Edt Toos Hep

DoW b xa RAE »H=xl o

- E

Search iternal name fromthe selected Ine

(D))

e S Neme Value nternal name
lanalysis optians
= Generl
New Proisct prog
Dete 0352007 date
Author poly autor
Project version 10 verit-version

soalar assigrmerts

fles

Keep-alfies

000

Cortin

Lcortinue-with-existing-host

cistriout

Fatow-unsupported-ux

TargetiCompler

) Complance wit standards

) PolySpace inner settings

nclude crectories (]

Results Directory [-results-dir]

Cpoyspece Resuts

— °

Carpte 0% | Nomtzaton: 0% | _Goviik:0% | emease:o% | _coraon | bevit 0% | twveno% | Lowision | Levekio%] Tam

o000 o000 o000 o000 o000 o000 o000

Bf comie oo

o000 [T

Bow
[FulLog

s parameter

2.2.1. Select results directory

Results Directory [-rezsults-dir]

| ChPolySpace_Results

This directory is the one where PolySpace Client will store the results of the analysis. In this Getting Started,

we will choose the default directory: "C:\PolySpace Results".

» Start by updating the result directory name by clicking on the browse button :

Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

2.2.2. Select the files of the analysis

» Now, Click on the button (right of the "New Project" label).

It opens the "Please select a file" window, from which you can select one or several files to analyse.

B Please select a file

Look ir _| FOUFCES
= I Wty Documents
@ analyzer.q 1 My Computer
@ cortroller. = CBa-System ()
[e] wlabal_c.c | PolySpace
& intiaization 1 PalySpace ForCandCPP
@ main.cpp __| Examples
6 metrix.cpp] 1 Demo_Cpp_Long

@ rriutticieriv
@ receiver cpp

(*.cpp) and (*.2) flles

D Recurse subdirectaries

Directories to include [-]

Source files [-sources]

» In the "Look in:" section, click on * and select

"<PolySpaceInstallDir>\Examples\Demo Cpp Long\sources". A list of files appears in the box.
The default <PolySpaceInstallDir> is C: \PolySpace\PolySpaceForCandCPP.

10

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

» Select "training.cpp" and click on in the "Source files [-sources]" section (bottom right)
of the window. The file is now listed among the source files to be analyzed.

B Please select a file h2
Look in: | sources v @

analyzer cpp sanalogic cpp
controller cpp

global_c.cpp
initializations.cpj
main.cpp

@ matrix cpp I
multiderived.cop zz_utils.cpp
63 resetver cpp

Cchprend .ol fles
D Recurse subdirectories

Source files [-sources) Directories to include [-]

_

C:\PolySpace\PolySpace FDr‘CandCPP\Exa‘mplestDEmu_Cpp_LDng\suur:es-\

£ -

» Click on OK to go back to the "PolySpace Client for CPP - New Project" window.

Note: it is also possible to drag a directory or source files and drop them in the "File Name/Absolute Path"
part (top left of PolySpace Client) without using the "Please select a file" window.

1

L
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |lm
I

2.2.3. Select the class to analyse

» Now, click on [Polyspace inner settings | and expand the "PolySpace inner settings" group.

&g » Check the box | | in the "Generate a main" column that is associated to

: the "-main-generator” line as shown below. It enables the "-class-analyzer" option allowing giving the name
of the class to analyse (see also step 2). Type "MathUtils" in the "Value" column as shown in the figure below.
If the class is surrounded by a name space, use the standard C++ syntax <namespaces: : <classnames.

Marme: Walue Internal hame:
nalysis options » It is also recommended
2 . to select the -voa option.
Session idertifier Mew Project frog . R .
Date 2410612007 dele If this option is selected,
Author Eard author PolySpace will give you
Project version 10 verif-version . .
Examine effects of scalar assignments Z voa some |nf.0rmat|0n on
Kesp all intermediate files (] Hkeep-all-files the pOSSIb|e range of
Cortinue with the current configuration ; continue-with-existing-host values for each scalar
Cortinug even on an unsupported Linux distribution L] allow -unsupported-linus: o t th h I o
TargetiCompiler aSSIgnmen 4 us he plng

Compliance with standards understanding the results

=) PalySpace inner settings Of the analysis
Specify a Visual Studio compliant main

=l Generate & main for & given class
WathLtis class-analyzer Note: When you want to

Analyze the class contents only |:| chass-only analyse a CIaSS b)’ itSeIf, the

Select methods called by the generated main dlefauft - clazs-analyzer-calls .

Don't check member intislization in the generated ma L] ho-constructors-int-check -C l ass- Ol’lly o Pt' on can
Generate 3 main for the given fundtions O been checked. It means that,
Main g.enaratinn general options even |f)’OU add Other classes
Stubbing A
assumptions and function members

Cthers
PrecizioniZcaling

definitions, PolySpace will stub
them. This option accelerates
analysis and allows checking robustness issues for the class. In this tutorial, it is not necessary to check this option:
the "MathUtils" class does not depend on other classes.

12

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |lm
I

2.3. PolySpace Client: running the analysis

» Click on to start the analysis. Alternatively, you can click on the button in the title bar to run _
PolySpace Client with the current setting. 2

The window titled "Save the project as" opens. You can decide where to store the configuration
information related to the analysis. Here, create a file called "demotutorial” and save it under
PolySpace result directory. The full name of that file will be "demotutorial .dsk".

B Save the project as ... X

Look in: |i{jPOIySpac:e_Results V! ? "|E|E|

Session idertifier | demotutorial |
My Metweork

Places Filez of type: i*.dsk L3 ! Cancel

13

L
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

» Click on to go back to the "PolySpace Client for CPP - New Project" window

and click again on to proceed forward.

HE PolySpace Client for CPP - C:\PolySpace_Results\demotutorial.dsk
File Edit Took Help

Ao B X6 A8 »6HE» 9

demotutoral sk

li=]

Search rternal name fromthe selected e

[0

. = T S
= s e
= General
i =
o 2anazony -
satrr b e
[0 o e
scalar assignments.] vos
files] keep-alfies
[m] Lcontinue-with-existing-host
Cortinue even [m] Fallow-unsupportec-inux
TargetiCompiler
oo i
W e
Specity a main
Include directories [-] 1= Generste a main for a given class.
[T e
Analyzs the class contents only O class-orly
et N
[m] Lno-constructors-int check
@ Generato amain for the ghven furctions =]
=
susoig
assunpuoes
B orere
Rosults Directory [~z suies-dix)
Cpoyspace Fesits e[, .
Corpie 0% | Voraizain 5% | Gor ik 5% | vemeiee 0% |_cormon | Lot 06 | Loz o | Lovoion | tevak 0%] v
s anann wmonn s s s s s wnonn oo
B come s seanintrers: (W[|[M)
B s v+ configuration of the host : 0K]
Fruos
g v ..
b cee s
starting ats g 24, 2007 104735
F*% C+ source compliance checking e
sy

A progress report

is displayed in the
bottom part of the
graphical interface,
indicating that the
analysis is being
performed.

The F button
is also grayed out.

Note: You may use the Stop Execution button - - to interrupt the analysis

but it is not part of the current tutorial.

14

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |Q@
I

2.3.1. Parsing errors during preliminary PolySpace analysis stages
After some checks, PolySpace will show an error message:

Message
@ ‘erification process Failed ' .
Let's try and understand why we get this error message.

First possible cause for the error message: Hardware recommendation

If this happens, please verify whether your computer meets the minimal hardware requirements.
A message similar to the one below would be displayed in the bottom part of the graphical interface:

°
| Cormpile - 0%] Irtermediate - 0%] CDFA - 0%] Levell - 0%] Level2: 0%] Leveld : 0%] Leveld - 0%] Total
00,0000 00,0000 00,0000 00,0000 00,0000 00,0000 000000 000041
EF compie Log Search n the log @ host E]
ﬁstats Werifying host configuration ... e
5 Futos Memory > 380Mo : 0x (1023)
swap > 160 : 0K (1726 M)
Susp >= ZPRAN : No <- error !
USE port availsble : ox
Serial port coul available : OK
Serial port cou? available : 0K
* 1 error occured
Errors found when verifying host configuration.
You must fix them before lsunching again
lor use —continue-with-existing-host v
hrification completed

» To help you understand the issue, you can search into the log file. Type "host" in the "Search in the log:"
box and click on @ to check whether the error corresponds to a hardware recommendation problem.

15

m’

Step 1. PolySpace Client - Setting up and launching an analysis on a single class |
I

If you have a problem related to host configuration, in order to continue analysis, you can either:
* upgrade your computer to meet the minimal requirements
* or use the -continue-with-existing-host option which overrides the initial check

for minimal hardware configuration.

» To set up the -continue-with-existing-host option, please type "continue"
in the "Search internal name from the selected line" box at the top right

Of the window Search internal name from the selected line : | continue

> Then click on [Z]. It will show all options containing the word "continue" as shown below:

Mame Walue Internal name
Analysiz options
= General
Session identifier Mgy Project Fparog
Drate 24/06/2007 Folate
Author bard Fauthor
Project version 1.0 Lverif-werzion
Examine effects of scalar assignments z Sat]
Heep all intermediste files : Fkeep-sll-files
Z Foontinue-with-gxisting-host
] Fallowy-unzupparted-linu
Target/Compiler
Cotnpliance with standards
[=l PalySpace inner settings
Specify a Wisual Studio compliant main
(= Generate a main for a given class
Class name tathltils Folass-analyzer
Analyze the class contents only |:| Folass-only
Select methods called by the generated main default Lolazs-analyzer-calls
Don't check member initialization in the generated ma |:| Fho-constructors-init-check
Generate & main for the given functions O

16

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |ﬂ@
I

» Check the box | lin the "Value" column that is associated
to the "-continue-with-existing-host" line.

Second possible cause for the error message: Information about Header files

Another cause of error may be that PolySpace Client misses some information about header files.

Remote analysis []

]

Hormaization 0% | CeeLnk: 0% | imermestete 0% | cormco%

l Levell : 0% l Level2: 0% l Leveia: 0% l Leveid : 0%]tha\

0000

00:00:00 000000 00:00:00

00:00:00

000000

000000 00:00:00 000000 DOODOG

Compie Lag Secrchinthe og: 44
B sas carger sparc Z
[Full Log

Werifying C4++ sources ...

¥erifying training.cpp
"e:\PolySpace\PolySpace ForCandCPPyExamples\Demo_Cpp_Long\sourcesitraining. opp”, line 2: error: could not open Source file "math.h”
#include <math.h>

1 error detected in the compilation of "training.cpp”.

[urfcation complsted

In the tutorial, as shown above, the file named "math.h" can not be found. To fix this problem, you need to
indicate its location. As PolySpace is not associated with one particular compiler, it is mandatory to indicate
where library files are stored.

In our "training.cpp" file analysis, the related "math.h" file is one of the includes distributed with PolySpace
for C/C++. It is located in <PolySpaceInstallDir>\Verifier\include\include-1linux. You shall
use that include file only for the purpose of this tutorial. When analysing your own code, it is recommended to
indicate the path to the standard headers dedicated to your own compiler.

17

m’

Step 1. PolySpace Client - Setting up and launching an analysis on a single class

» Open the "Please select a file" window by using button
(right of the "demotutorial .dsk" label in the top right of the interface):

B Please select a file X

Laak in: |_| inciude

& incl.

[*.cpp) and (*.c) files

|:| Recurse subdirectaries

£ e

Source files [-sources]

Directories to include [-]

CHPolySpacePolySpaceF orCand CPPMExamples\Demao_Cpp_Longlsourcest

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |g@
I

» Select "<PolySpaceInstallDir>\Verifier\include\include-1linux",
where <"math.h"> is located for the Linux OS target.

» Click on in the "Directories to include [-I]" section,

i

» Then, select "<PolySpaceInstallDir>\Examples\Demo Cpp Long\sources",
where "training.h" is located.

» Click on in the "Directories to include [-I]" section, then close the window using ok .

Notes:
I. The other header file needed "zz_utils.h" is also located in the same directory.
2. It is also possible to drag a directory and drop it in the "include directories [-I]" part
(top left of PolySpace Client) without using the "Please select a file" window.

In this tutorial, as we have chosen includes of the Linux OS, we have to select a Linux OS target.
It defines a set of predefined compilation flags, known to be default or implicit compile options
from cross-compilers for these platforms:

» To set up the -OS-target Linux option, please type "0S-target"
in the "Search internal name from the selected line" box at the top right

Of the window Search internal name from the selected line : | O5-target |

19

Step 1: PolySpace Client - Setting up and launching an analysis on a single class

» Then click on . It will show all options containing "OS-target" as shown below:

IMatng Walue Internal narme:

Ahalysis options

= General
Session identifier Mevy Project prog
Date 24/08/2007 date
Author bard authar
Praject version 10 verif-version
Examine effects of scalar assignments z WOR
Keep al intermediate files | Hkeep-alk-fies
Cartinue with the currert configuration Z continue-with-existing-host
Continue even oh an uhsupported Linus distribution] allow-unsupported-linu:

= Targetiompiler
Target processor type SpArc s target

Line: ~ OS-target

Defined Preprocessor Macros o
Undefined Preprocessot Macros v i
Incluce incluce
Comtnandiscript to apply to preprocessed files ... |-post-preprocessing-command
Commandiscript to apply after the end of the analysis -.. |Fpost-analysis-command

Compliance with standards

[= PolySpace inner settings
Specity a Yisual Studio compliant main
(= Generate a main for a given class

Class name Mathl_tils class-analyzer
Analyze the class cortents only I class-only
Select methods callsd by the generated main default hd clazs-analyzer-calls

Dont check member intialization in the generated mal no-constructors-init-check

Ood

Generate & main for the given functions

Main generation general options
Stubbing

Assumptions

Cthers

PrecisioniScaling

» Then, click on ¥ and chose Linux OS target out of all predefined OS targets.

Note: Associated PolySpace defines a set of relevant stubs of standard templates and C libraries depending on
the OS target chosen.

20

[4
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

2.3.2. Progression of the analysis

» Click on to restart the analysis.

Some results may have already been written in the "C: \PolySpace Results" directory, because of
a previous click on [¥ Execuie . Therefore a window opens to check whether you want to overwrite them

@ The directory C:iPolySpace_Results already exists,
Some files might be overwritten, Do you want ko continue 7

In our example, this is what we want to do. Click on (=2

Note: closing the PolySpace Client window will not stop the PolySpace analysis.

If you wish to stop it, click on (you will be asked for confirmation).

If the window is closed without stopping the analysis, the analysis continues in the background.

Opening again PolySpace Client with the same project automatically updates the analysis with its current status.

The progress bar allows following the progress of the analysis:

Cormpile : 100%. ”m.:.rm.a|iz.ati.:.n -u:u:uf:-:;.“ Cet Link - 100%. ”|.-.tame.:ii.ate--w:u:uf::s || CDF&, - 100% Level2 : 0%] Leweld: 0%] Lerveld : 0% Tatal
00:00:07 00:00:20 00:00:09 00:00:46 00:00:30 00:01:05 00:00:00 00:00:00 000000 000256

A progress report may be obtained by clicking on Bf comvie Lo for the compilation phase,

or | [Fuitss for the full analysis in the bottom part of the window. Click on B stats to get
additional information about the current analysis (list of options, stubbed functions, functions used during main
construction, checks found after each phase, etc.). Click on the icon to refresh the summary.

21

PR

L
Step 1: PolySpace Client - Setting up and launching an analysis on a single class |l@
I

2.3.3. End of the analysis

When the analysis ends, PolySpace proposes to review the results:

@ verification process completed.
Do you want to launch PolySpace Viewer ?

» Clickon %], and go to section Step 3 of the tutorial to view the results.

Note: You can also access the results via the i® icon in title bar.

22

Step 2.

PolySpace Class Analyzer

PolySpace Class Analyser analyses applications class by class, even if theses classes are only partially developed.
It allows detecting errors at a very early stage, without any test case to write. The process is very simple:

|. PolySpace will generate a "pseudo" main;

2. It will call each constructor of the class;

3. Then it will call each public function from the constructors;

4. Each parameter will be initialised with full range (i.e. with a random value);

5. External variables are also defined to random value.

Note: In PolySpace, prototypes of objects (classes, methods, variables, etc.) are needed to analyse a given class.
All missing code will be automatically stubbed.

As a result, a class will be analyzed by exploring every branch of the methods through all its constructors.

3.1. Sources to be analysed

The sources associated with the analysis normally concern public and protected methods of the class.
However, sources can also come from inherited classes (fathers) or be the sources of other classes used by the
class that is being analysed (friend, etc.).

3.2. Architecture of the generated main

PolySpace generates the call to each constructor and method of the class. Each method will be analyzed with all
constructors. Each parameter is initialised to random. However, even if you can have an idea of the
architecture of the generated main in PolySpace Viewer, the main is not real. You can not reuse and compile it
with your analysis of PolySpace.

23

e
Step 2: PolySpace Class Analyzer m@
!

If we come back to the class "MathUtils", analysed in the first step, we can see that it contains a constructor,
a destructor and seven public methods. The architecture of the generated main is as follows:
Generating call to constructor: MathUtils: :MathUtils ()

While (random) {

If (random) Generating call to function:
If (random) Generating call to function:
If (random) Generating call to function:
If (random) Generating call to function:
If (random) Generating call to function:
If (random) Generating call to function:
If (random) Generating call to function:

}

MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:

:Pointer Arithmetic()
:Close To Zero()
:MathUtils ()
:Recursion 2 (int *)
:Recursion (int *)
:Non Infinite Loop ()
:Recursion caller ()

Generating call to destructor: MathUtils: : ~MathUtils ()

Note:

I. An ASCII file representing the "pseudo” main can be seen
in C: \PolySpace Results\ALL\SRC\ polyspace main.cpp

2. If the class contains more than one constructor, they are called before the 'while' statement
inan 'if then else' statement. From a PolySpace point of view, this architecture ensures
that the analysis will evaluate each function method with every constructor.

24

3.3. Log file

When analyzing a class, the list of methods used for the main is also given in the log file during
the normalization phase of the C++ analysis. Here is the example with 'MathUtils'.
The log file can be found at root of 'C:\PolySpace Results'

Step 2: PolySpace Class Analyzer |
[

khhkhhkhkhkhkkkhkhhhhhhhhkhkhhhdhhhhhhhhhkhkhkdhhkhhhdhhhhkhhhhhhhhhhkhkhkhrrrrhhhhk

* % %

*** Beginning C++ source normalization

* % %

dhkhkhhkhkhkkkkkkhkhhhhhkhkhhkhkhkhhhhhhhhhhkhkhkkhkhhddhhhhrkkhkhhhhhhrrhrkkrrhhdd

Number of
Number of
Number of

*kkk Ot
*kkk Ot
*xkkk Cgt

files
lines

lines with libraries

source normalization

Load

1
202
7009

ing)

1
source normalization 1 (Loading) took 20.8real, 7.9u + 11l.4s (1lgc)
2

source normalization

* Generating the Main

Generating
Generating
Generating
Generating
Generating
Generating
Generating
Generating

call
call
call
call
call
call
call
call

to
to
to
to
to
to
to
to

function:
function:
function:
function:
function:
function:
function:
function:

P_IN

MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:
MathUtils:

IT)

:Pointer Arithmetic()
:Close To Zero()
:MathUtils ()
:Recursion 2 (int *)
:Recursion (int *)
:Non_ Infinite Loop ()
:~MathUtils ()
:Recursion caller ()

25

[4
Step 2: PolySpace Class Analyzer |Q@
|

It may happen that a main is already defined in the files you are analysing. In this case, no other main will be
generated, and the existing one will be analysed. You will receive this warning:

*** Beginning C++ source normalization

* Warning: a main procedure already exists.

* No main will be generated: the existing one will be used

Note: The main will be analysed even if it is not relevant for the class given to the -class-analyzer option.

3.4. Characteristics of a class and messages of the log file

The log file may contain some error messages about the class being analyzed. Theses messages appear when
characteristics of class are not respected:

* It is not possible to analyze a class which does not exist in the given sources. The analysis will stop with the
following message:

@User Program Error: Argument of option -class-analyzer must be defined
<names>.
Please correct the program and restart the verifier.

* It is not possible to analyze a class which only contains declarations without code. The analysis will stop with
the following message:

@User Program Error: Argument of option -class-analyzer must contain at least
one function : <name>.
Please correct the program and restart the verifier.

26

[4
Step 2: PolySpace Class Analyzer |Q@
|

3.5. Behaviour of global variables and members

* Global variables
In a class analysis, global variables are no longer considered as following the ANSI Standard if they are defined
but not initialized. Indeed, the ANSI Standard considers, by default, that global variables are initialized to zero.

In a class analysis, global variables do not follow standard behaviour. The are handled as follows:
* Defined variables: they are initialized to random. Then they follow the data flow of the code to analyse. _
* Initialized variables: they are used with the initialization value. Then they follow the data flow 3

of the code to analyse.

* Extern variables: the analysis will stop. 1
To continue the analysis, it is mandatory | 2 extern int fround(float fx);
. 3
to use the —a}llow—undef—val?lable 2 // global variables
option. In doing so, external variables 5 int globvarl;
will be treated as defined variables. : int globvarz = 100;
8 class Location
; 9
An faxample on the right §hows 1o private:
the behaviour of two global variables: | 11 void calculate_new(void) ;
12 int x;
13
.) 14 public:
In this example, globavarl is defined | 1s // constructor 1
but not initialized (see line 5): | 1° (int intx = 0) { x = Pob
N 17 // constructor 2
the check for a division by zero | 13 (float fx) { % = fround(fx); };
at line 23 is thus orange | 19 L
20 setx (int intx) { = ; calculate_new(); };
(check). | 21 fsetx (float f£x) {
On the other hand, globvar2 gg }lgt(= fround(fx); 0) // ZDV check i
o 1 = chec 1s orange
is initialized to 100 (see line 6): | 53 { d
check for a division by zero | 25 £x = i // ZDV check is green
q q 26 t i
at line 25 is green | 5. setx i)
(check). | 28 }i
29 }i
27

e
Step 2: PolySpace Class Analyzer |g@
!

* Data members of other classes
When analysing a specific class, variable members of other classes, even members of parent classes,
are considered as initialized as explained below:
|. They are considered as may be not initialized if the constructor of the class is not defined.
So they are assigned to full range.
2. They are considered as initialized to the value defined in the constructor if the constructor
of the class is defined in the class and given to the analysis. Please note that, if the -class-only option
is used, the definition of the constructor is automatically missing.
3. They could be checked as run time error, if and only if, the constructor is defined
and does not initialize the considered member.

An example below shows the result of the analysis of the class MyClass. It shows the behaviour of a variable
member of the class OtherClass which was given without the definition of its constructor:

In that example, variable | class OtherClass
member of OtherClass

. protected:
is initialised to random: the check int x;
is orange at line 7 and there are OtherClass (int intx); // code is missing
N N public:
p055|ble overflows at line |7 getMember (void) {return =;}; // NIV is warning

because the range of the return bi
value wx is full range class MyClass
in the type definition.
OtherClass m_loc;
public:
(int intx) : m_loc(0) {};
show (void) {
int wx, wl;
wX m_loc.getMember () ;
wl 2; // Possible overflows because OtherClass
) // member is assigned to full range

Vi

28

e
Step 2: PolySpace Class Analyzer |g@
!

3.6. Methods and classes specificities

e Template

A template class can not be analysed alone. Only instances of a template can be analysed with the PolySpace
Class Analyser.

If we have template<class T, class Z> class A { ... } ,we want to analyse template class A with
two class parameters T and Z. To do that, we have to define a "typedef" to create a specialisation of the
template, with a specific specialisation for T and Z. In the example below, T represents a int and Z a double:

template class A<int, double>; // Explicit specialisation
typedef class A<int, double> my template;

my tempate is used as parameter of the -class-analyzer option, to analyse this instance of the template A.

e Abstract classes

An instance of an abstract class can not be created, so it seems that abstract classes can not be analysed.
The workaround is to "remove" the pure declarations. For example, in an abstract class definition,

you could change void abstract func () = 0;to void abstract func ();

This kind of modification is done automatically by the class analyser if it is given an abstract class to analyze.
The virtual pure functions would then be ignored in the analysis.

* Static classes
If a class defines static methods, they are called in the generated main as classical ones.

29

[4
Step 2: PolySpace Class Analyzer |!@
|

¢ Inherited classes
When a function is not defined in a derived class, even if it is visible because inherited from a father's class,
it is not called in the generated class. In the example below, the class Point derives from the class Location:

class Location

protected:
int x;
int y;
Location (int intx, int inty);
public:
int getx(void) %return x;%;
int gety(void) {return y;

i

i

class Point : public Location

protected:
bool visible;
public
Point (int intx, int inty) : Location (intx, inty)

visible = false;

void show (void) visible true;};
void hide (void) visible = false;};
bool isvisible(void) {return visible;};

i

Since the two methods Location: :getx and Location: :gety are "visible" for derivate classes,
the generated main does not include theses methods when analyzing the class Point.

However, inherited members are considered as volatile if they are not explicitly initialised in the father's
constructors. In the example above, the use of the two members Location: :x and Location: :y
will be considered as volatile. As a consequence, if we analyse the above example in the current state,
the method Location: :Location (constructor) will be stubbed.

30

Step 3:
PolySpace Viewer - Exploration of results

This step illustrates how to explore analysis results that were generated by either PolySpace Client
or PolySpace Server. We review the results of the analysis of "training.cpp" performed during Step 1.
You can access the results of any successful analysis by double clicking on the PolySpace Viewer icon:

. R . PalySpace Yiewer
If the button has been clicked at the end of the previous analysis Shortcut
2]

(see step 1), PolySpace Viewer automatically opens results. =0

4.1. Modes of operation
The first time the PolySpace Viewer is opened, a window will appear to describe the different modes of operation.

& New feature s -y "Expert mode", all checks can be seen.

lavee seieet.. The number and categories of checks to be reviewed
as well as the order in which to review them can be

Thie Viewer has two modes of operation. chosen by the user (See next section).

Choose hetwesn: * In "Assistant mode", the rules of the review

- The new review assistant wizard, follows a methodology selected by PolySpace.

- Or the expert Viewer mode. The "best" subset of checks will be automatically

selected and sorted out. The PolySpace Viewer

Pl e et s will then guide the user through these selected checks.

he reviewed.

You will be able to select the mumnber of checks to be reviewed and . . 5
the "best" subset will be sorted out for you by PolySpace. The > for this tuto‘rlal, Please u.ntICk o
Wiewer will then guide you through these selected checks. Do not display this message again
and then click on "Expert mode".

Do nat display this message again .
Note: The mode of operation may be changed later

[Expertmade | [_assistartmode || in PolySpace Viewer.

31

4.2. Download results

L
Step 3: PolySpace Viewer - Exploration of results |lﬂ

After having clicked on "Expert mode" the PolySpace Viewer window looks like below:

E PolySpace Viewer

Eile Edit Tools Windows Help

[Fommeaimror V]| % 2 v T F | My o om wo ow s e s ozw JUY e WO we woomme m oue e

CEX

OB oo Ee W el F O A
Cading review progress. ‘CWM ‘Pm
e fua
b reviewed frb o review e e || 2 Bl
or e e

ElVariables View

Oean
@ calledby 4
Qeats

[compiste

iten by “

Readby »

riten bytask 4[|

13

Read bytask

PonSpace

TECHNOLOGIES

in partnership with ‘h E
St cnes

[Please selecta result(“rte) file with the File Open button or icon

32

L
Step 3: PolySpace Viewer - Exploration of results |I@
!

» Click "File>Open" to load result files. If you did not perform the analysis,
you can still review the results by opening the following file:
<PolySpaceInstallDir>\Examples\Demo CPP Long\RTE px O2 Demo CPP_LAST RESULTS.rte

Lockin L) PelySpace_Resuts v ¢ oEE

T Ll

|7 PolySpace-Doc

My Recent 3 RTE_p0_002_Cortrol_Data_Flow_Analysis rte
Documents 74 RTE p1_02_Safety_nalysis_Level 1 rte

&

FT_ %RTE _p2_07_Satety_tnalysis_Level_2 e » Then click on
‘3 RTE_p3_02_Safety_Analysis_Level_3rie .
Desktop [RTE_pa_o2_satety_snalysis_Level to proceed with further steps
, Note:
” D-’/ e The RTE px 02 New Project LAST RESULTS.rte
s is a sort of "link" on the best analysis in term of precision:
'ﬁl RTE_p4_0O2_Safety_Analysis_Level4.rte.
'_J‘g Other results have lower precision.
hily Computer
H.)‘-
My Metwark
Places

File name: | E_px_02_Mewe_Project_LAST_RESULTS e \
Files oftype: |+ e ~ | | cancel

33

Step 3: PolySpace Viewer - Exploration of results |
I

4.3. Analysing PolySpace results in expert mode ("'training.cpp")
After loading the results in "Expert mode", PolySpace Viewer window looks like below:

HE PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST_RESULTS.rte

File Edit Tools Windows Help
5B oo oo B e e S G e

[] s 9 v T moaw MU SR ose owrooe o oomoew rw MY wp oop or OO aw o moum we e

Cadna review mrogress Cot Progess o check currently selected
o check ssictect i i
i reviewed is to review (nia) i nia

et i e BE

Prosechural entlies

12 e Pt

ECall Tree View

O st
O caltedty |
@cans >
[] cormpiste

] Upcat on sslection

Fotertially Witten by

Potartislly Read by

PonSpace

TECHNOLOGIES

in partnership with C{!]MAC

|

< |

[) waltingfor a command

34

L
Step 3: PolySpace Viewer - Exploration of results |lm
!

I. On the bottom left is the "Procedural Entities" View. It displays the list of files analyzed
in the "Procedural entities" column.
2. In the bottom right area is the source code view. Each operation checked is displayed using meaningful
colour scheme and related diagnostic:
* Red: Errors which occur at every execution.
. : Unproven - an error may occur sometimes.
* Grey: Shows unreachable code.
e Green: Error condition that will never occur.
3. The two windows just below the tool bar display details about the currently reviewed check

(when the check has been selected): PREED
4
Coding reviewy progress Count Progress Mo check currently selected
Mo check selected hia nia
hib reviewved £ nb to reviewe (hia) s)
| Software relishilty indicator nia]
O &

4. The top right area is used for displaying both control and data flow results.
You can switch from one view to the other by using the "Windows" menu:

& PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST_RESULTS.rte
File Edit Tools Help
{ 3 @ |« Reorganize deskmps Cirl+R |.¢," e \mq&? fssistant

8 vertically

: == NIV FLOAT
3 N . . . IRY SHF NIP ASRT NTC | K-NTC NTL UNR. oA
Sl Organize Code sources deskiop b Switch to Yarishles view | EHREG ‘ | H ” H |

OUFL
Coding review progress Count Pro.. : Mo chechk Switch to Call Tree view
Mo check gelected WEl hig -~
nb revievwed §nb to review (ni) nis nia &=
Software reliabilty indicator nia nia .
OEl

35

e
Step 3: PolySpace Viewer - Exploration of results ‘QM
!

4.3.1. Procedural entities view

Each file and underlying functions in the "Procedural entities" view is colorized according to the most critical

error found:

* exception.stdh. contains no check. It contains stubs of the <exception> template part of the standard
stl library. This template stubs is an accurate representation of the initial template provided by PolySpace. All
templates of standard library have been stubbed to speed up analyses.

* new.stdh. contains no check. It contains implemented stubs of the <new> part of the stl library template.
. contains the main which was automatically generated. All checks there are green:
no run-time error has been found. Please note that the pseudo code in this file is only here to give

information about the generated main. It must not be analysed with PolySpace.

* training.cpp. contains the analysed Class "MathUtils". It is colored in red because one or more definite
run-time errors have been found in it.

* training.h. is colored in no run-time error has been found.

* polyspace stdstubs.c. contains stubs of standard functions part of the 1ibc library used in
training.cpp. This file contains no check.

* polyspace stdstubscpp.cpp. contains stubs of some standard functions part of the stl library used
in training.cpp. This file contains no check.

36

L
Step 3: PolySpace Viewer - Exploration of results |l@
!

» Click once on the H left of "training.cpp" to expand it and display the list of function members defined
within "MathUtils" of "training.cpp". The function members in red or grey
(MathUtils: :Pointer Arithmetic (),etc.) have code sections that need to be inspected first because
they are definite diagnosis of PolySpace (either run-time errors or dead code).

HE PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project LAST_RESULTS.rte
File Edit Tools Windows Help

B e oo oA B9l e E 0 DG A

[rmerieon] % 7~ ME E w4 EE ose o wro oo o oo e rw Y we o oo T mwowe owowe me we
Coding review progress Count Progress Mo check currertly selected
o check selecled e s
s reviewea is to review (v s Fin
oftwre relsbity nicator i i oE

Procedurel enies

'E}Iariahles Yiew ECall Tree View

|2 e Project
_polyspace_main.cpp
_polyspace_stdstubs.c Osan
__polyspace_stdstubscpp.cpp Read by »
O catteaby 4
iten bytask ql
nemstdh Gl »
Resd bytask 1
[compiete
Potartilly Wrtten by
] Updiate on selection
y ITECHNOLOGIES
in partnership with ‘h“ 1
d] cnes g
< |3
& I |
[waiting fora command

37

L
Step 3: PolySpace Viewer - Exploration of results |Q@
|

The columns (ﬂ, ﬂ, ﬂ, ﬁ, J,...) provide information about run-time errors found in each function:
* The ﬂ column indicates the Software reliability indicator in percentage (level of proof).

100% means a complete reliability on the code for the category checked by PolySpace

with the hypothesis taken for the analysis.
* The ! | column indicates the number of definite run-time errors or reds,
* The J column indicates the number of unproven or

(may be run-time errors that do not occur systematically), Rrocechral erifies
* The ﬂ column indicates the number of safe operations or % HenFreiest
_polyspace_main.cpp
* The ﬁ column indicates the number of unreachable instructions T exceptionstdh
or grey code sections. # new.stdh
= training.cpp
Let's have a look at an error found by PolySpace in "training.cpp". +
[+ hdathUtils:Mon_Infinite_Loop)
Example of runtime error found by PolySpace: Memory Corruption Rl 2t pointer pithmetic)
» Click on H to expand "MathUtils: :Pointer Arithmetic ()" to find out M
more about the red error. It displays a list of red, , and symbols, M
featuring the complete list of code areas that PolySpace checked within oz
the "MathUtils: :Pointer Arithmetic ()" function. s
. ~ oA
~ OVFLS
~ UNFLE
~ NPT
]
]
~ EXC.0
~ HNT 14
~ NP4z
f IR
38

L
Step 3: PolySpace Viewer - Exploration of results |lm
!

» Click on the red "IDP.13" item - which stands for lllegal De-referenced Pointer -, to precisely locate this
error in the source code. The bottom right section is updated showing the location of the "IDP.13" item.

PolySpace Viewer - C:\PolySpace_Results\RTE_p:

File Edit Tools Windows Help
B oo o # B @ 1 wem & ST e ¥ 69 s

| Coding review progress Court Pro. training.cpp | MathUtis:Pairter_Arthmatic() f line 72 J colurin &
b DF reviewed /o DR toreview Red) o1 | 0 o
i eviewsi it e (Red) o | 0 =5y puerorpomss

Sotwere relsity indictor E=al BEI og

FError : pointer is outside its bounds
[Pointer is initialized

vocedural erfizs x[. :
Erooedural erif il i} Variables View
125 hew_Project o 1 ~
e = Vaiizbles Cals Line
i NewProject ¥ tiaining MathUtis:Fointer_Arithmetic) 61
_polyspace_main__polyspace_ MathUtils_object P pat_stubs. Utilszrandom_int) 71
P pst_stubs Utils:random_int0) 74
& taining.o 4
SRR b pst_stubs. Utits:random_ink) 75
Mathltis:Hon_ininte_Laog0
B MathUIs=F ointer_Arthmation . e ooy
 EXCO
VoA
Nz =
+ nvLa 60 b |
¥ vona 61 woid MathUtils::Pointer_Arithmetic ()
 OVFLS oz
S 6 Teils u:
¥ 64
s 65 int tab[100]:
P 66 int i, *p = tab:
' NIF2 67 b |
« Exc0 Nl for(i 1< 100; it pH)
W NNT. 11] ‘2
0
Ve 7 £, randon_inti) - 0]
if(n. randon_int() ==
' L 72 Whe s 4/ ut of bouds
+ voa1a 73
¥ EXCAS 74 i = wrandom_inc();
ST 5 TE (wrandow inc()] *(o-i) = 107
o ExcT 76
” 1 (0<3 ce 1€=100.
 NNT 18 o = I
7
7 e 1s o ™
% 80 B 7/ Safe pointer access
® 81)
2 vife:
< | S| EE v
[

39

%‘“’

L
Step 3: PolySpace Viewer - Exploration of results |l@
!

» Click on red symbol in the source code at line 72. An error message is opened:

LEX

B training.MathUt...

lin "training.cpp” line 72 column 5
\Source code

Pointer p is de-referenced outside of its bounds. Indeed, at the line 72
the instruction "*p = 5;" corrupts the memory as it puts the value "5"

)) o outside of the array "tab" pointed to by the pointer "p".
[Exrror : pointer is outside its bounds

[Pointer iz initialized

» You can also see the calling sequence leading to that particular red code section. .
To do so, select the "IDP.13" item in the "Procedural entities" column,and then click on the ¥ icon
(on the top left of the PolySpace Viewer window) to display the corresponding run-time error access graph:

E Error call graph for training.MathUtils::Pointer_Arithmetic().IDP.13 - PolySpace Viewer

_polyspace_nain. cpp training. cpp training. cpp

nain MathUtils: :Pointer_Arithnetic() P13

40

e
Step 3: PolySpace Viewer - Exploration of resulis m@
!

4.3.2. Colours in the Source code view

Each operation checked is also displayed using meaningful colour scheme and related diagnostic
in the source code view as links:
* Red: A link to the error message associated to the error which occurs at every execution.

o : A link to an unproven message - an error may occur sometimes.
» Grey: A link to a check shown as unreachable code. The error message is in grey.
. : A link to 2 VOA (Value on Assignment) or an error condition that will never occur

in the list of verifications made by PolySpace.

* Black: represents some comments, source code that does not contain any operation to be checked
by PolySpace in terms of run-time errors and optimized operations, e.g. x = 0;.

* Blue: text highlighting the keyword "procedure" and "function".

* Underlined blue: A link to a global variable in the "Global variable View".

g.cpp
4.3.3. More examples of diagnostic ,

. . . . 28 /7 Here we demonstrate the ability to absSTIact out & very large nuuber
Unlike most other testing techniques, PolySpace provides 23 of iteravions. Pleass note that this is don in linesr time, since
the beneﬁt Of findlng the exact Iocation Of run-time errors j? Polydpace Werifier models the dynamic behavior, without execution.
in the source code. Below are some examples that you can | Tha loop LSt iterats 27731 Ciies bafors Yhig allovs it o Bresk out.
review with PolySpace Viewer. 33 Correct operation is demomonstrated hecause:

35 1] x = x + 2 is shown to never generate an owerflow
36 2] the loop is not infinite
Example: Non-Infinite loop o
» Select "MathUtils: :Non Infinite Loop()"inthe |3 e mswesierion infinise foop
"Procedural entities" column. The function is fully green: 8L oomet wnc kg - LTSS /7 2703
it means that the local variable x never overflows, even if |«
the exit condition of loop deals with y that is smaller than |i; ™= """
x. PolySpace confirms that the function always terminates. | il bl presk
48 r=x/2
Note: using the -voa option when launching the analysis, w '
PolySpace can give more information about the range o e
on scalar assignments R

2|

L
Step 3: PolySpace Viewer - Exploration of results |!@
|

Other example: unreachable code
We can also see in the "Procedural entities" column that some function
members are never called. It is materialised by a grey background:

In the figure on the right it is the case for all public and protect member
functions of "Square: :" and "RTE: : " classes. Indeed, the PolySpace analysis
was made for the class "MathUtils".

4.3.4. Advanced results exploration

You can filter the information provided by PolySpace to focus

on the type of errors you wish to investigate.

There are pre-defined composite filters "Alpha", "Beta", "Gamma",
"User def"and "Filter All" that you can choose depending
on your development process:

Procedural entities
ﬁ Mew_Project
+| _polyspace_main.cpp
+ exception.stdh
+ new.stdh
= training.cpp
+
- I
+ MathUtils::Pointer_Arithmeticd
5
#] Mathltils:Recursion_2{int)
+ hathUtils:Recursion_callen)
RTE::test)
Square:Square_Root])
Square:Square_Root_conufloat;float™)
Square:Unreachable_Coded)
+| training.h

+ __polyspace__stdstubscpp.cpp

+ __polyspace__stdstubs.c

HE PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST RESULTS.rte

File Edit Tools ‘Windows Help

v £ s o[
& -0 o oo gl B i st aF 4 UNE fapha (9] G Asistant
Filter all
x S S wm oz M S s wps con pow mw MY W s me T A wo wm uR o w ue
'’ User det
Cocing review progress Court | Pro...{ Mo check currently selected i
Mo check selected e nm | E
* amma
b reviswed / b ta review (n/s) | i
e = ndefine
ISoﬂWare rediabilty indicator] hia) E

» Select "Gamma" to get all the "red" and "grey" code sections. It is mainly
development stages to focus quickly on critical bugs.

used during the earliest

42

L
Step 3: PolySpace Viewer - Exploration of results |lm
!

Procedural entities
» To illustrate the use of these filters, we will focus on the Pointer arithmetic pathutistion_ninite_Looe0
member function that we have examined in the previous section. =
Click on "Alpha" to expand the information checks related : \E’zif
to "MathUtils: :Pointer Arithmetic ()" 2 s
~ NIVL3
This list of acronyms - for type of operations checked - shows what kind o4
of errors PolySpace automatically looked for. VLS
The "Beta" level highlights checks that could cause a processor halt, * UNFLE
memory corruptions or overflows. V¥ NIPT
L]
» Select "Beta" mode (which is the default mode).. Select again e
"MathUtils::Pointer Arithmetic ()" in the "Procedural entities” : Ei: :?
view and then, click on @ to get the list of the checks. e
Procedural ertities ¥ iopaz
M athUtils::Nan_lnfinite_Loop() V¥ V0A14
Bl hathUtilz:F ointer_srithmetico) ¥ EXC5
& ExCO " HNT .16
& VOAA ~ EACAT
~ HNT 13
~ oA
~ NIP.12
]
~ EXC.0
~ HNT 14
f IR ~* HIVLZE
o WDad + NIVL24
" EXC.15 o HIVL 385
~ NNT 16 ~ NIP 28
~ EXCAT ~ OWFLET
~ NNT 1B " UNFL.23
~ HvLza
 IDP 30 ~ IDF.30

43

L
Step 3: PolySpace Viewer - Exploration of results |!@
|

To get the comprehensive list of operations checked by PolySpace, you can switch to |fzhs mode.
You may also want to use filters to focus on particular categories of errors.
Those filters are located at the top of the PolySpace Viewer window:

PolySpace Viewer - C:\PolySpace_Results\RTE_px_02_New_Project_LAST_RESULTS.rte

File Edit Tools Windows Heln

; v £ mus
= v oooq Boe i e g <5 [| 60 essistant
x & s opar | zow || NIY | SCRL ope || T || iop | cee || com || pow || Fry (| BES nee || oop || exe || TEOET st || wme || wTL || ume | mE || wom

Note: When the mouse pointer moves on the filter, a tool tip gives its definition.

1o Procedural ertities

» Click on ﬂ (top of the window) to suppress all checks and click on
You will get list of checks containing only IDP (lllegal Dereference Pointers)
reds, or 2

= training.cpp
+ MathUtils::Close_To_Zero)
+ MathUtils::Mon_Infinite_Loop()

. = hdathUtils:Painter_Arthmeti
Note Clicking on "VOA" will hide remaining informative green code sections, s e Am e

leaving only the red, and gray checks. : :2:
- EX
4.3.5. C++ specific checks R

Specific C++ checks are split into five categories:
I.NNT or "Non Null This pointer" (| ™)checks the this-pointer validity.
2. CPP checks all C++ related constructions (| == |), like positive array size verification,
dynamic cast, typeid parameters, etc.
3. OOP checks all C++ object oriented issues (| ™ |).
4. EXC checks all C++ constructions dealing with exceptions (| ** |).
5. INF displays information about C++ implicit and called functions when dealing with virtual functions (| " |).

TAA

e
Step 3: PolySpace Viewer - Exploration of resulis m@
!

When reviewing C++ code with PolySpace Viewer, it is important to do a selective review (category by category)
in the order of the list of categories located at the top of the PolySpace Viewer window from left to right.
It is also important to review C "like" checks before C++ like "checks".

4.3.6. Miscellaneous
The € icon gives access to the PolySpace Manual. All views have a pop-up menu (right click on mouse).

» Close the PolySpace Viewer window by clicking on the upper right j symbol
(PolySpace Viewer can also be closed using "File>Close").

4.4. Methodological assistant Q .

After this first usage of PolySpace Viewer, some simple questions remain:
* Do all checks need to be reviewed?
¢ If not, what are the checks to review?
* How many?
* What is the best order?
The Methodological assistant answers to all theses questions. It helps to select and manage the checks
to be reviewed. It selects a "best" subset and sorts checks out. The Assistant mode in the PolySpace Viewer
will then guide you through these selected checks.

» If the PolySpace Viewer is still open, close it by clicking on the upper right j symbol, open it again,
load the same results and chose the "Assistant" mode.

45

L
Step 3: PolySpace Viewer - Exploration of results |lm
!

After having loaded the results in "Assistant" mode, PolySpace Viewer window looks like below:

Ele Edit Tools Windows Help

B o oo

W B e 1

wer - C:\PolySpace_Results\RTE_px_02_New_Pr

Dwm S 4F T @
———— DOsomows € €% 5 b e

Cading review progress Court. Pro...{ training cpp i MathLtis: Pointer_Arthmetic() / ine 72 J colum 5
o check selectedt s |
s reviewed i to review () v e " = 5: // out of baunds
Sotware refabity indicator e o ||y
~
ror : pointer is outside its bounds
Pointer is initialized
Prosedural rifes x[2] 1 - [0 ECall Tree View
222 e Project) * d
E— =S ; o
o misd i ten by task A1 | wenpoiect O » taiming |
oen 150 sl heonoony e I polyspace_main._polyspsce_Mathlltls_objact
_palyspace_main.opp O, < @i < | =
axcaption stah
newstdh
Haining.h 1
2 finclude <math.b>
3 #include "training.h”
4 #include "zz_urils.n”
5
5
7 J% Here we demonstrate PolySpase Verifier's ability to
8 distinguish betveen values which are very close to
o zero, and zere itself.
w s
1
1z void MathUtils::Close To_Zero ()
13
12 Utils u:
15
16 Eloat xmin = u.randen float(]
17 £loat smax - u.randem £loat():
18 £loat v;
13
20 if (s o xmin) € 10E-37)
a1 0
2z
23 else /7 division by zero is impossible here
24 ¥ = fumex # xmin) / (xmax - xmin)p
ELI
26
27
28 /7 Here we demonstrate the ability to shetract out a very large mmber
29 of iteratioms. Please note that this iz done in linear time, since
= I sl Polydpace Verifier models the dynawic behavior, without execution. 2
[)MewProject Sourefie:newstah newstdh Line 1 Golumn: unknown

46

L
Step 3: PolySpace Viewer - Exploration of results |Q@
|

4.4.1. Assistant dashboard
The second line of buttons on the toolbar and the two views just below are used to navigate between the
checks selected by PolySpace:

methodology for C++ ¥ I I:‘ Skip gray checks 44 @ %‘ » »
: 1 z a
Coding review progress Count | Pro.. [y Mocheck currertly selected
Mo check selected nfa W]
hk resvieswved §nb to reviesy (nda) nia s *
Software reliakilty indicator nia s D E
Q;

PolySpace Viewer has also been updated as follows:
I. Now, in the "Procedural Entities" view the list of files analyzed is sorted out according

to the methodological assistant used.
2. In the source code view, each operation will be sorted out according to the PolySpace methodology

in the following order:
* Red: The methodological assistant browses all red errors.
* Gray: The methodological assistant browses unreachable code depending on the radio button

"Skip gray checks".
o : The methodological assistant chooses and reviews the "best" unproven operations - those that

are the most probably actual errors.

47

L
Step 3: PolySpace Viewer - Exploration of results |l@
!

» Click on

PolySpace Viewer has been refreshed with the first check selected by the methodological assistant:

PolySpace Viewer
File Edit Tooks Windows Help

O R v oo ®WRe1

Methodology for G+ v 5, Oswasees 4 & S W e

to go to the next check.

wom 5 9 T

MathUtilszClose_To_ZeroQ)
MathUtilzNon_infinite_Loop0
Mathils: R ecursion_2(nf)

MathltilsR soursion_salle0)
RTE:es)

Square:Square_Root)

S quare::Square_Ract_oemetls stlast)
Square:Unreachable_Coden

[__polyspace_stistubs.

[__polyspace_stastubsepp.opp

B _patyspace_mainopp

B exceptionstah

6 newstah

B trsining.h

< | >

Coring review progress Court Progre..|{ Waningope / MathAIs:Pairter_ArEhmelicG /Ine 72 f corm 5
o DP reviewed /bGP toreview (Re) on o 3
inio reviewved / nb 1o review (Red) 01 o N AL T
Sottware relbity ndeator a7 = o g|
rror ¢ pointer iz oucside its bounds
[pointer is initializea
rosedural ertiies x| 7 i .
(Rl U B Call Tree Yiew
5 Hew,_Project 0 T =
ol
& tsining.os .
e P training MathUtils::P ointer_ArithmeticOr
B MathUtzz cintsr_Ackthr 0 1| . e et
P8 - g
+ 1| [by tasi P pst_stubs.Utilsznandom_int)
ok ¥ pst_stubs Utilszrandom_int)
? ead bytask
+ opan

Potertially Witten by

Potertizlly Read by -

Ed pointer across mumerous pointer arithueric operations, L
s8 including invalid addresses and back to valid addresses.

61 void MathUrils::Pointer_hrithmetic ()
¢
&3 Ueils u:

65 int tan[100];
S int i, *p = tab;

68 for(i
69 ®

1< 100 i, o)

7 1f(u. randon tnt() == 0)
7 - s 77 ou of vounds

7 i = w.randon_int();
s if (u.random_inc()) *(p-ip = 10;

7 i (0<i ee i<=100}
[

77 Safe pointer access

[INewrPuist Souceflsitanimacey taningopp Lnest Solmmids

48

L
Step 3: PolySpace Viewer - Exploration of results |Q@
|

The methodological dashboard gives details and allows reviewing the check.

» Tick the review checkbox and type a comment in the text box on the right as follows:

 Methadology for C++ v| F————— [ckiporaychecks 4 € @ & M ooz

: 1 z a

Coding review progress Count Progre training.cpp [MathUtils::Pointer _Arithmetic() / line 72 [colurmn 5

by [DP reviewwed £ nb IDP to review (Red) Wt 100 N

hb revievwed J§ nb to reviewr (Red) Wt 100 + B = 3¢ ff Out of bounds

Sattware reliabity indicator 97 23 BI have rewiewed this check and inserted a comment.

[Error : pointer is outside its bounds

Pointer is initialized
_
4

The left part of the dashboard has been updated, and displays some statistics in three lines:
* The first line gives the number and percentage of remaining checks to review in the selected category
(here, red IDP checks).
* The second line gives values for the whole colour category (red, grey and .
* The last line gives values for the whole software being reviewed. This is called Software reliability
indicator. It gives the percentage of checks compared to the total number of checks.

Other buttons in the Methodological dashboard allow navigating to the next " or previous 4 check

that hasn't been reviewed yet. It's also possible to refresh the different views to come back to the check
currently being reviewed using the % button.

49

e
Step 3: PolySpace Viewer - Exploration of results ‘QM
!

4.4.2. Choose a methodological assistant
Some methodologies |Methedology for Ce+

¥l and associated levels +f————— have been pre-defined
by PolySpace.

Methodalogy for Ada

Methodalogy for C

Methodo C++

Methodalogy for Model Based Designed

B Preferences PolySpace Viewer §
The level defines the number of checks to review by category. Gl e ke i BBEE, naeere comteraen |
It is chosen according to the development phase during which B T — Nursber of checks to review
Ll "o . " different configurations for use by resutts Criterian 1 Critetion 2 Criteriaon 3
the code has been analyzed: "Fresh code", "Unit test B a—
and "Code review" felows v
i X i X 0 Crestion of & new configurstion set, i)
It is possible to define your own Methodology in the & Detiilenofthe s for the hree e
0 " . ditterent review crieria (used as ool tios of -
Preferences >PolySpace Viewer>Assistant the slider), cor
. . . Dediniti 1 th ber of checks b
methodology" tab that is accessible from the "Edit" menu. e
- A postive Aumber Up to 9999, L
- The word all (or &l or ALL) to select all
the checks, (Sl
- The word auto (or Auto or AUTO) for automatic | ¢ 5 Cas oty
check selection (Ada only) e
Here, you can create a new configuration set and define for s
each level what will be the categories of check to review and e
MIP
how many of each category. =
IRy
T+ only
Configuration set NNT
Methodalogy far C++ v cpp
FRY
ele)
Reviesw threshold criterion EXC
Criterion 1 els only
Criterion 2
EXCP
Criterion 3
oK] I Apply] [Cahcel]
50

L
Step 3: PolySpace Viewer - Exploration of results |ﬂ@
|

4.5. Report Generation

When PolySpace performs an analysis, it generates textual files that can be used to create Excel® reports.
These files are located in the results directory (See "C:\PolySpace Results\PolySpace-Doc"

or "<PolySpaceInstallDir>\Examples\Demo CPP Long\PolySpace-Doc"). These files contain data
related to all views except the source code one.

The "C:\PolySpace Results\PolySpace-Doc" directory should contains the following files:

& C:\PolySpace_Results\PolySpace-Doc

File Edit Wiew

@ Back - ? | 'ﬁ'

Address (|3 PalySpace-Doc

Favaorites Tools Help j Q

X 19 -

N Faolders
&

v“ ' (€]

Mame Size Type Date Modified
[Z] Mew_Praject_call_Tree SKE Text Document 5j9/2007 2:15 PM
r:;] Mew_Project_RTE_Wiew 14 KE Text Document 5192007 2:15 PM
r;j Mew_Project_variable_Yiew 1KE Text Document 5/9/2007 2:15 PM
@ MNew _Project-MOM-SCALAR-TABLE-APPEMDIX OKE PSFile S/9i2007 2:13 PM
@ PalySpace_Macros 195 KB ¥LS File S/9f2007 2:15 PM

51

Step 3: PolySpace Viewer - Exploration of results [

» Open the file called "PolySpace Macros.xls" and enable macros to display the Excel® file below:

A B c D E F] H
1
2 Copyright @ PolySpace Technologies, 1999-2006
3
4 Apply filkers? ————————— zenerate checks by file?
a
g & Mo filters ™~ yes
; © Beta filters “ no

9) .
10 Help Use this button to create the complete synthesis in one file. Help
Select the RTE expart view and a file in which to save results.

1; If the other views are in the same directory as the RTE view

i then they will automatically be incorporated into the same file.

14 Generate PolySpace Results Synthesis ‘

15

16

17 Reports can he generated fraom all PolySpace td file farmat results. These are generated
18 hy the PolySpace Verifier during an analysis, the export option in the PolySpace Viewer,
19 ar from the command line using the "gen-excelfiles" command.

20

21 Individual PolySpace text result files can be processed using the below macros:
22|

23 The macros are:

o RTE Apply to RTE views exported from PolySpace Viewer

a5 Call Tree Apply to Call Tree views exported from PolySpace Viewer
I “Jariablas Apply to Variable views exported from PolySpace Yiewer

27 —

28

29 Warsion 3.4.1D RTE = Run Time Errar

30

52

Step 3: PolySpace Viewer - Exploration of results

Generate PolySpace Results Synthesis

» Click on | A file browser opens.
Select the file called "New Project RTE View.txt" as shown below:

Select a RTE View text file 2)X
Regarder dans |l|j PalySpace-Doc ﬂ @ X O - Outils *

Mesw_Project_Call_Tree.txt

t RTE ' t
Histarique

Nesw_Project_‘ariahle_Wiews. tet

£

Mes documents

Favoris

B
s Mam de fichier : | j | i |

Favoris téseall Type de fichiers ; |Text Files (*,kxt) ﬂ o

After a few seconds, an Excel® file is generated.
It contains several spreadsheets related to the application analyzed.
" Application Call Tree { Shared Giobak /' Global Data Dictonary ¢/ Checks by e/ Check Synthess / Laundhing Options / BTE == M checks locaton / Orange €|

53

e
Step 3: PolySpace Viewer - Exploration of results ‘
\

For example, in "Checks Synthesis" all statistics about checks and colors are reported in a summary table.
A B cCDEF G

1 RTE Statistics

2 | Check category Check detail R Gr % proved
3 OBAI Out of Bounds Array Index 0 0 MAA,

4 MNMNL Uninitialized Local Yariable 0 156 | 100.00%
5 IDP lllegal Dereference of Pointer |1 5 75.00%
B MNP Uninitialized Pointer 0 121 100.00%
7NN Uninitialized Yariable 0 0 0.00%
g IRY Initialized Yalue Returned 0 0 MAA,

9 COR Other Correctness Conditions 0 2 100.00%
10 |ASRT User Assertion Failure 0 1 100.00%
11 |POW Power Must Be Positive 0 0 MAA,
12 7DV Division by Zero 0 3 75.00%
13 |SHF Shift Armount Within Bounds 0 0 MAA,
14 | OWFL Overflow 0 4 B714%
15 |UNFL Underflow 0 E | B571%
16 UOWFL Underflow ar Overflow 0 2 40.00%
17 |EXCP Arithmetic Exceptions 0 0 MAA,
18 |NTC Mon Termination of Call 0 0 MAA,
19 |k-NTC Known Mon Termination of Call 0 0 MAA,
20 NTL Mon Termination of Loop 0 0 MAA,
21 UNR Unreachable Code 0 0 MAA,
22 UNP Uncalled Procedure 0 0 MAA,
23 IPT Inspection Point 0 0 MAA,
24 OTH other checks 0 0 MAA,
25 EXC Exception handling 0 21 100.00%
26 Q0P Object Oriented Programming 0 0 MAA,
27 |CPP C++ 0 0 TAA
28 NMR Mon Null Receiver 0 g 100.00%
29 FRY Function Returns a “alue 0 0 MAA,
30 INF Informative check 0 0 A,
31 | Tatal 1 52 B6.46%

54

Launch PolySpace Remotely

This paragraph describes the basic steps to launch an analysis in remote. To do so you need:
I. A Queue Manager server (QM) installed.
2. Your desktop PC configured with a PolySpace Client.
3. A networked machine configured with a PolySpace Server.

Please see the PolySpace Installation guide (available on the PolySpace CD-ROM in \Docs\Install)
to install and configure, the Queue Manager, a Client and a Server.

Note: Launching an analysis remotely requires a PolySpace Server product and associated license.

5.1. Launching an analysis
It can be done in two steps:

» Step |: set up an analysis as described in Chapter 2 but do not launch it.

» Step 2: tick the "Remote analysis" checkbox (see figure below) and click on
to launch the analysis.

Femote analysis ®
| Complle : 0% l Intermedliate - 0% l COFA: 0%] Levell : 0% l Levelz: 0% l Leveld 0%] Leveld: 0% | Tatdl
000000 o000 000000 000000 w0000 000000 w000 000000
[compie Log Searchinthelog: [44]
s
[FulLog
e parmmeter

55

[4
Launch PolySpace Remotely |ﬂ@
!

The analysis starts and the compilation phase is performed on the desktop PC. At the end of the "C++ source
verification phase" the analysis is sent to the Queue Manager server. By clicking on the "Full Log" tab, you will
see a message like this:

Remote analysis

o

Total

[compie Log
B stets
& FulLog

Irtermediste | 0% l COFA: 0%

l Level : 0% l Level2: 0%] Levela: 0%] Leveld: 0%

00:00:00 00:00:00

o

00:00:00 00:00:00 00:00:00 00:00:00 00:00:22

Search in the log @

53]

Ending at: Jun 20, 2007 15:12:1

User time for suif: léreal, 4.2u + 3.73 (0.2gc)
Generating remote file
Done

User time for polyspace-c: 17.7real, 4.4u + 4.2s (0.Z2gc)

ram
*%% End of FolySpace Verifier snalysis

ram

Adding the analysis to the queue ...

Transfering the archive to the server ...

Transfer completed.

Anslysis ID : 1

The analysis has been queusd. You may follow its progress using the spooler.

herifcation completed

The analysis has been queued with an ID number, and you can follow its progression
using the PolySpace Spooler.
If you do not tick the "Remote analysis" checkbox, the analysis continues locally.

56

[4
Launch PolySpace Remotely |l@
!

5.2. Management of PolySpace analysis in remote:
the PolySpace Spooler

You can check the analysis processes in the queue by clicking on the short cut on your desktop PC

Raccourc

|?_'|-g | PolySpace Spooler o1 on the icon £ in the menu tab of the launcher.
F

ID | Author Application Resultz directary CPU Statuz Date Language
| Pobspace Dema_Ada_Deskio e\RESULTS Ada BERGERON) A ADATS
2 polyspace Demo C_Desktop e \RESULTSWRES4.1 BERGEROM | completed | 28-Dec-2006, 12:39:32 [E

Connected to Queus Manager localhost User mode

57

Launch PolySpace Remotely

When you select an analysis and right click, you can manage it in the queue:

& PolySpace Queue Manager Interface

Operations Help Follow progress ... I

1D |Author | &pplication T Status | Date | Language|
PalySpace

full]

Diowerload results ..
Download results and remove from queue ...

Move down in queue

Kill and download results ...
Kill and remave from queus ...

Connected to Queue Manager locahos| Remove fram queLE ... er mode

* "Follow progress" displays the associated log file in a Launcher window. If the analysis is running,
you can follow the update of the log file and associated progress bar in real time.

* "View log file" displays the associated log file in a "Command prompt" window, in which you can see the last
100 updated lines of the log file in real time. This option is only available when the analysis is running.

* "Download results" downloads the results of an analysis to the Client. If the analysis is still running, already
available partial results are downloaded on the Client, without disturbing the analysis.
This option is not available for a "queued" analysis (that has not yet began).

* "Move down in queue" reduces the priority of a "queued" analysis.

* "Kill and download results" stops the analysis definitively and the latest available partial results are downloaded.
The status of the analysis changes from "running" to "aborted". The analysis remains in the queue.

* "Kill and remove from queue" stops the analysis definitively and removes it from the queue.
The results will be lost.

* "Remove from queue" removes a "queued”, "aborted" or "completed" analysis. The results will be lost.

58

Launch PolySpace Remotely

The queue can also be managed via the "Operations>" menu:

Purge queue

Fleaze select the action you want to perform and type the administrator password ©

Action : Purge completed and sborted analysis

Pazsword : |

()8 | Cancel |

* "Operations>Purge queue" purges the entire queue or purges only completed and aborted analyses
(see below). The queue manager administrator password is required.

* "Operations>Change root password" changes administrator password of the queue manager-.
By default, the password is "administrator".

5.3. Batch commands

* Launch analysis in batch:
A set of commands allow the launching of analyses in batch (under a Cygwin shell on a Windows machine). All

commands begin with the prefix <PolySpaceCommonDir>/RemoteLauncher/bin/polyspace-remote-.

Commands available are polyspace-remote-cpp and polyspace-remote-desktop-cpp.

They are equivalent to the commands with a prefix <PolySpaceInstallDir>/bin/polyspace-.
For example, polyspace-remote-desktop-cpp -server [<hostnames: [<port>] | auto] allows
sending a C++ client analysis remotely.

59

e
Launch PolySpace Remotely ‘QM
!

* Manage analysis in batch:
In batch and on a UNIX platform, a set of commands allow the management of analysis in the queue.
All theses commands begin with the prefix <PolySpaceCommonDir>/RemotelLauncher/bin/psqueue-:
* psqueue-download <ID> <results dirs>: downloads an identified analysis into a results directory.
[-£] forces download (without interactivity) and -admin -p <passwords allows administrator
to download results. Use [-server <name>[:port]] to select a specific Queue Manager.
Use [-v|version] to indicate release number.
* psqueue-kill <IDs>: kills an identified analysis.
* psqueue-purge all]|ended: removes all or finished analyses in the queue.
* psqueue-dump: gives the list of all analyses in the queue associated to the default Queue Manager.
* psqueue-move-down <ID>: moves down an identified analysis in the queue.
* psqueue-remove <ids>:removes an identified analysis in the queue.
* psqueue-get-gm-server: gives the name of the default Queue Manager.
* psqueue-progress <ID>: gives progression of the currently identified and running analysis.
[-open-launcher] displays the log in PolySpace launcher graphical user interface. [-full] gives full log file.
* psqueue-set-password <old password> <new passwords>: changes administrator password.
* psqueue-check-config: checks the configuration of Queue Manager.
[-check-licenses] checks for licenses only.
* psqueue-upgrade: allows upgrading a Client
(see PolySpace Install Guide in the <PolySpaceCommonDir>/Docs directory).
[-1ist-versions] gives the list of available releases for upgrade.
[-install-version <version number> [-install-dir <directory>]] [-silent] allow
to install an upgrade in a given directory potentially in silent mode.

Note: <PolySpaceCommonDir>/RemoteLauncher/bin/psqueue-<command> -h gives information
about all available options for each command.

60

e
Launch PolySpace Remotely |g@
!

5.4. Share analysis between account
* analysis-key.txt file

For security reasons, all analyses spooled are owned by the user who sent them.
Each analysis has a unique crypted key.

The public part of the key is stored in a file named analysis-keys. txt and associated to a user account.
On a UNIX account, this file is located in: " /home/<username>/ . PolySpace".On a Windows account,
it is located in: "C: \Documents and Settings\<username>\Application Data\PolySpace".

The format of the ASCII file is the following (*t means tabulation):
<ID of launching> “t <server name of IP address> "t <public key>

Example |

1 ml20 27CB36A9D656F0C3F84F959304ACF81BF229827C58BE1A15C8123786 Q L
2 ml20 2860F820320CDD8317C51E4455E3D1A48DCES576F5C66BEEF391A9962
8 ml20 2D51FF34D7B319121D221272585C7E79501FBCC8973CF287F6C12FCA

When attempting to manage (download, kill and remove, etc.) a particular analysis, the Queue Manager
will examine this file and check the associated public key before allowing the action.
If the key does not exist, an error message appears: "key for analysis <ID> not found".

So, if user A wants to manage (for example download results of) an analysis sent by user B,

user A should edit his own analysis-key. txt file and add into it the line corresponding
to that analysis in the analysis-key.txt file of user B.

61

e
Launch PolySpace Remotely m@
!

* Sharing analyses between projects with a magic key
A magic key allows sharing analyses without taking into account the <ID>. It allows having the same key for all
analyses launched. The format is the following:

0 <Server id> <your hexadecimal value>

All analyses spooled will use this key instead of random one. This would allow any user that has this key in his
analysis-key.txt file to manage all analyses sent with the magic key.

Note: The magic key only works for analyses launched after it has been set up. Analyses sent before, will keep
their auto-generated random keys.

62

Summary

After having followed each steps of this tutorial, you are now able to launch an analysis using PolySpace Client
using a class by class analysis and explore some results with PolySpace Viewer. All theses activities can be
performed locally on your desktop PC or in a Client/Server architecture.

You will find more information on advanced options in "PolySpace C++ documentation.pdf"
which is available on the PolySpace CD-ROM or by clicking on @ in PolySpace tools.

63

EEEEEEEEEEEE

